
Comparative Outcomes of Contemporary DES in Real-World: Is There Difference? Data from Real-World Registry (IRIS-DES Registry)

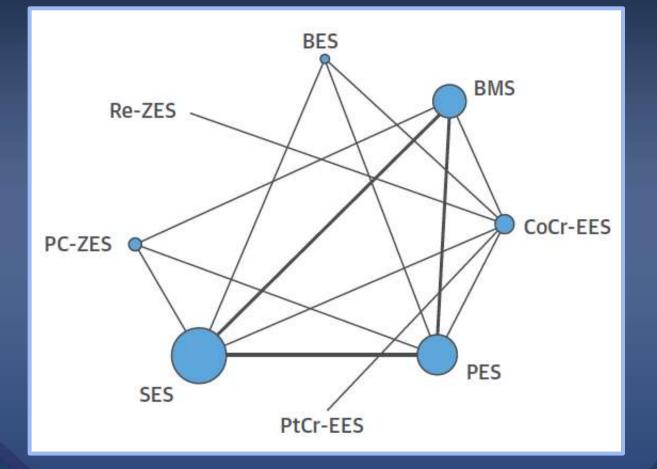
Duk-Woo Park, MD Department of Cardiology, Ulsan College of Medicine, Asan Medical Center

40-Years of PCI

Robert A Byrne et al. Lancet 2017; 390: 781–92

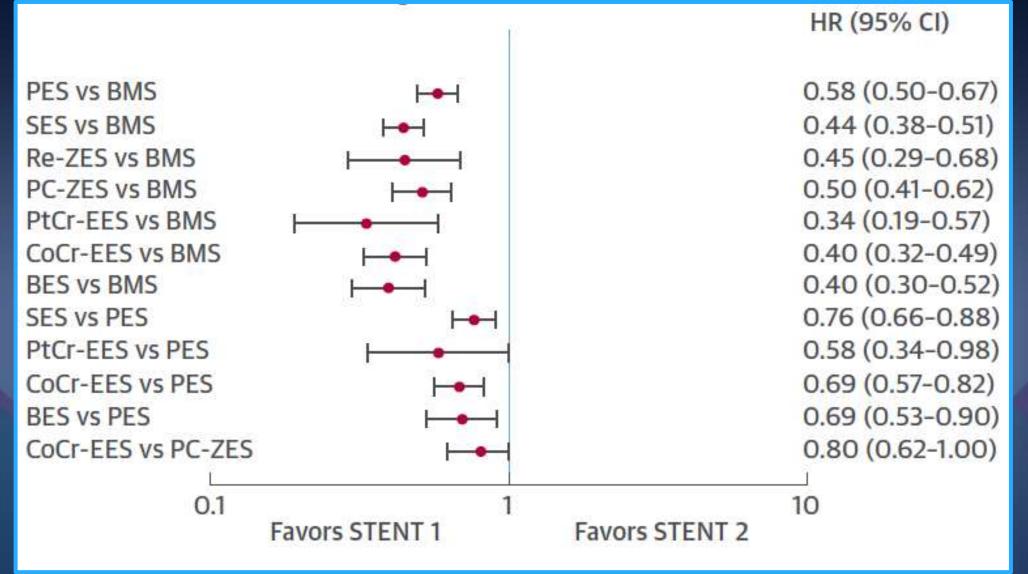
Second-Generation DES

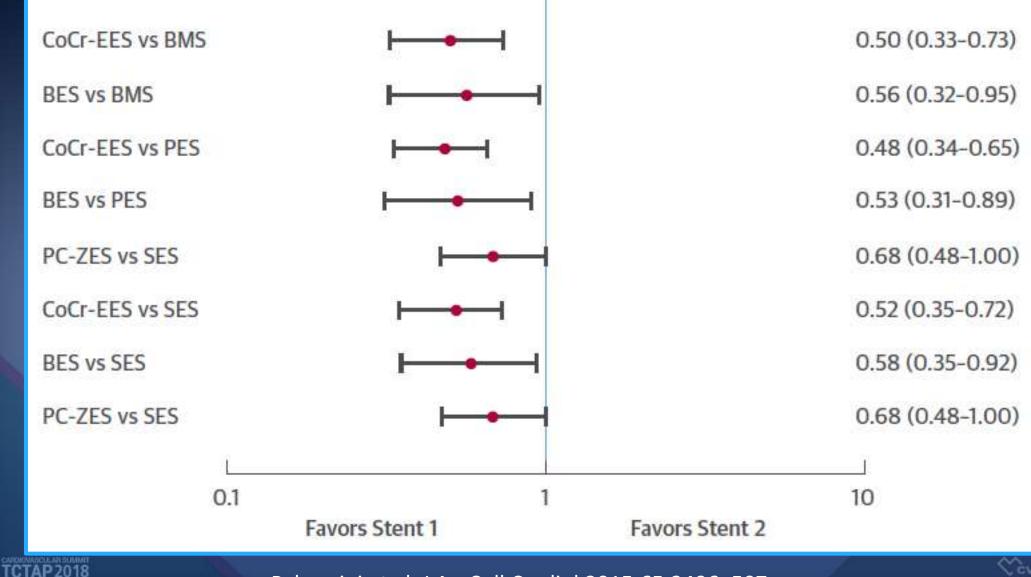
	Dural polymer-coa		Biodegradable polymer-coated stent						mer-free uting stent	Bioresorbable drug-eluting stent	
Manufacturer	Abbott/Boston	Medtronic	Biotronic	Terumo	Translumina	Boston	Biosensors	B. Braun	Biosensors	Abbott	
Name	Xience/Promus	Resolute	Orsiro	Ultimaster	Yukon Choice PC	Synergy	BioMatrix	Coroflex ISAR	BioFreedom	ABSORB	
Material and drug	CoCr/PtCr-EES	CoNi-ZES	CoCr-SES	CoCr-sES	316L-SES	PtCr-EES	316L-BES	316L-SES/ probucol	316L-BES	PLLA-EES	
Shape											
Strut thickness	81 µm	91 µm	60 µm	80 µm	87 µm	74 µm	120 µm	65 µm	112 µm	150 µm	
Coating	Circumferential				Abluminal					Circumferential	

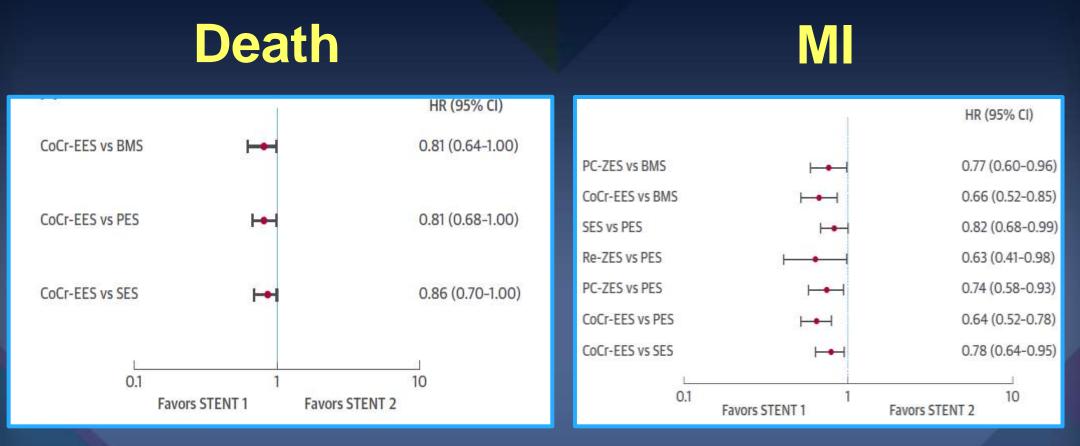


?? Difference in Outcomes Among Contemporary DES: Individual, Stent-Specific RCT

	Devices*	Total number of patients	Latest follow-up	Primary endpoint	Primary result (hazard ratio or risk difference, 95% CI)	p value
RESOLUTE AC ³⁷	ZES vs EES	2292	5 years	TLF	No difference (0.9%, -2.2 to 3.9)	0.61
ISAR-TEST 538	SES (PF) vs ZES	3002	5 years	TLF	No difference (0.98, 0.84-1.15)	0-80
PLATINUM ³⁹	EES vs EES	1530	3 years	TLF	No difference (0-84, 0-56-1-26)	0.40
NEXT ⁴⁰	BES (BP) vs EES	3235	3 years	Composite of death and MI (safety), or TLR (efficacy)	No difference in death and MI (0.96, 0.77–1.19) or TLR (1.03, 0.8–1.34)	0·70 (death and MI), 0·80 (TLR)
COMPARE II41	BES (BP) vs EES	2707	5 years	Composite of cardiac death, MI, or TVR	No difference (1-11, 0-92-1-33)	0.26
BIOSCIENCE42	SES (BP) vs EES	2119	2 years	TLF	No difference (1.00, 0.77–1.31)	0.98
DUTCH PEERS ⁴³	ZES vs EES	1811	2 years	Composite of cardiac death, MI, or TVR	No difference (1-10, 0-81-1-50)	0.55
BASKET-PROVE II ³⁴ †	BES (BP) vs EES	1530	2 years	Composite of death, MI, or any revascularisation	No difference (1·11, 0·77–1·62)	0.58
SORT OUT VI*	BES (BP) vs ZES	2999	3 years	TLF	No difference (0.90, 0.71–1.14)	0-36


Updated Network Meta-Analysis including RCT with at least 3 year FU 51 RCTs; 52,158 patients (median 3.8 yr FU)


Efficacy; TVR



Safety; Definite or Probable ST

Hard Clinical Endpoints

Contemporary DES in RCT; Enhanced Safety and Efficacy Outcomes

- Second-generation DES showed better safety outcomes (ST, death, or MI) than first-generation DES or BMS during long-term FU.
- By a meta-analysis of 51 comparative trials, second-generation DES showed better efficacy outcomes than either first-generation DES or BMS after a median 4-year FU.

Are There Any MAJOR Differences in Clinical Outcomes Between the Most Widely Used Contemporary Metallic DES?

Difference in RCT and Registry?

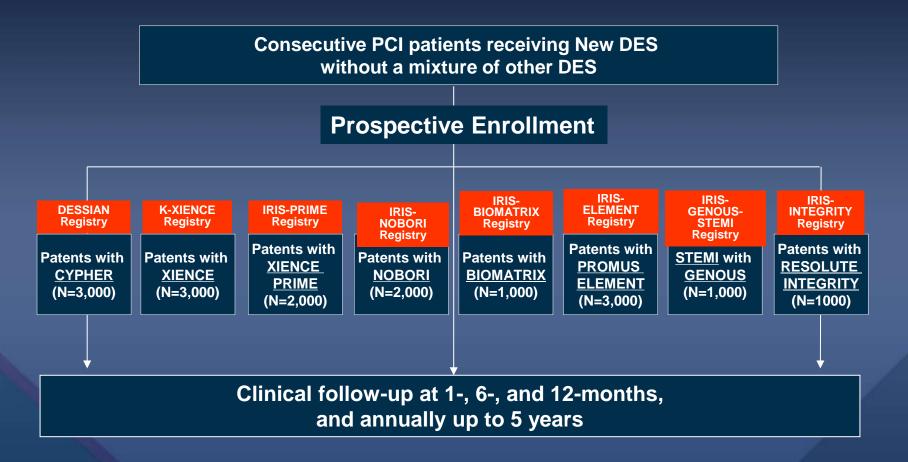
IRIS DES registry

- Multicenter, Prospective, Real world observational study
- To compare the safety and efficacy of the second- or newer-generation DES and the first-generation DES in everyday clinical practice
- ClinicalTrial.gov; NCT01186133

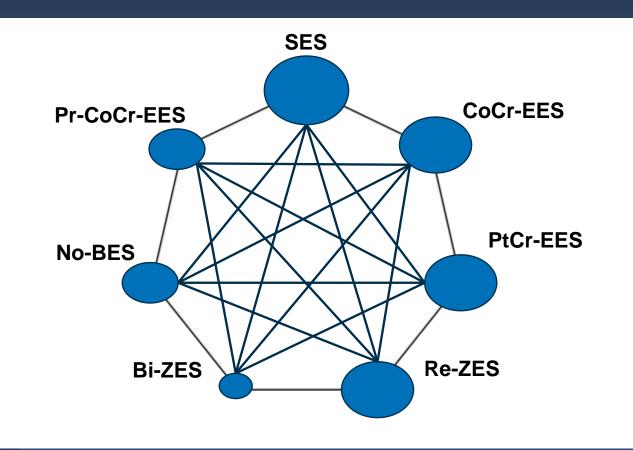
IRIS DES registry

Inclusion Criteria

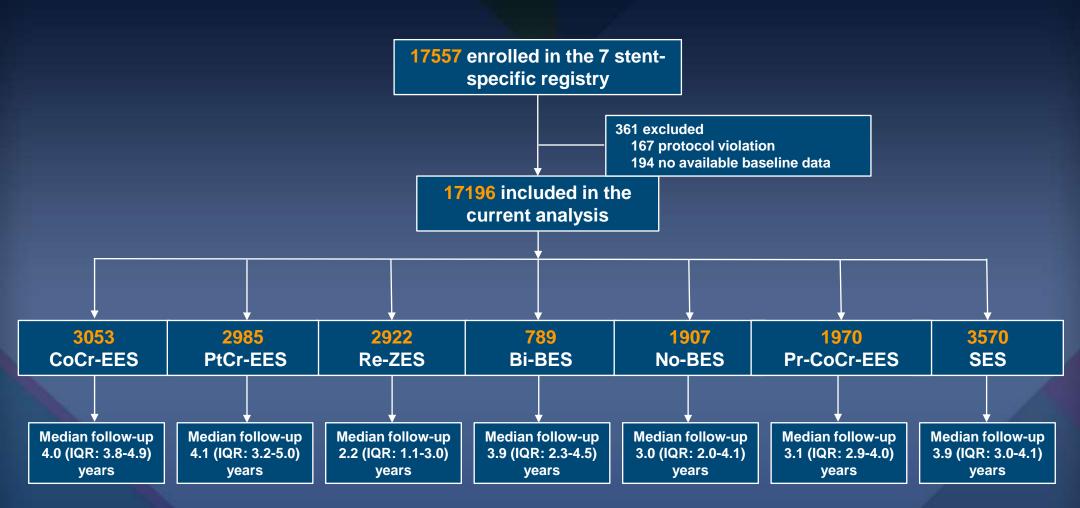
 Coronary disease amenable to percutaneous coronary intervention (PCI)


Exclusion Criteria

- Patients with a mixture of several DES
- Life expectancy less than 1 year


Evaluation of Effectiveness and Safety of the First, Second, and Newer Drug-Eluting Stents in Routine Clinical Practice; IRIS-DES Registry

Updated Analysis of IRIS-DES Registry


7 registry; 17,196 patients, median 3.3 years

Study Flow of the IRIS-DES Registry

Clinical Characteristics

Characteristics	SES	CoCr-EES	PtCr-EES	Re-ZES	Bi-BES	No-BES	Pr-CoCr-EE
Characteristics	(n=3570)	(n=3053)	(n=2985)	(n=2922)	(n=789)	(n=1907)	S (n=1970)
Age (years)	63.6 ± 10.8	63.5 ± 10.8	63.8 ± 11.0	64.0 ± 10.9	64.0 ± 10.5	64.0 ± 10.8	63.9 ± 10.7
Men	66.3%	67.5%	70.6%	72.3%	68.8%	68.8%	72.0%
BMI (kg/m²)	24.7 ± 3.1	24.7 ± 3.2	24.7 ± 3.3	24.8 ± 3.2	24.7 ± 3.1	24.6 ± 3.2	24.6 ± 3.1
Diabetes mellitus	36.4%	33.4%	33.8%	32.6%	29.2%	29.1%	35.1%
Hypertension	62.6%	62.5%	61.2%	61.1%	58.6%	59.3%	62.8%
Hyperlipidemia	40.2%	37.6%	36.4%	47.5%	37.6%	32.6%	36.3%
Current smoker	27.1%	28.9%	29.2%	28.8%	28.1%	30.2%	31.3%

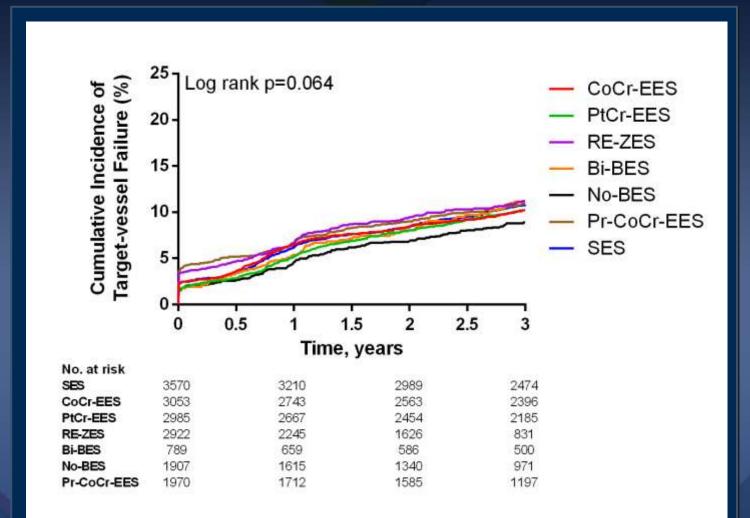
4

Clinical Characteristics

Characteristics	SES (n=3570)	CoCr-EES (n=3053)	PtCr-EES (n=2985)	Re-ZES (n=2922)	Bi-BES (n=789)	No-BES (n=1907)	Pr-CoCr-EE S (n=1970)
Family history of CAD	4.8%	3.6%	6.7%	8.0%	6.7%	4.7%	6.4%
Previous MI	7.7%	5.2%	5.0%	5.2%	4.9%	4.2%	4.6%
Previous CHF	2.4%	2.1%	2.7%	2.1%	3.0%	1.2%	2.6%
Previous PCI	19.1%	14.9%	10.8%	11.9%	7.0%	8.5%	9.4%
Previous CABG	2.4%	2.0%	1.2%	1.8%	1.3%	2.1%	1.9%
Renal failure	4.2%	3.3%	3.1%	3.4%	3.0%	2.3%	3.8%
History of stroke	7.6%	8.2%	7.3%	7.2%	7.0%	6.3%	6.7%

Clinical Characteristics

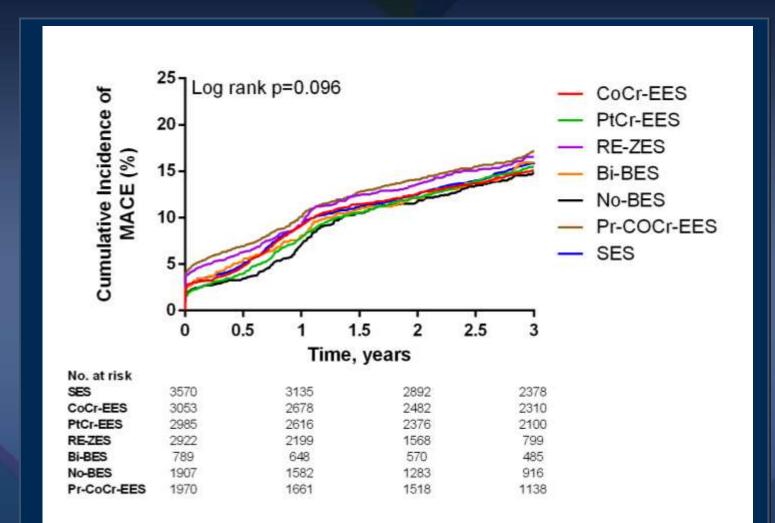
	SES	CoCr-EES	PtCr-EES	Re-ZES	Bi-BES	No-BES	Pr-CoCr-EES
Characteristics	(n=3570)	(n=3053)	(n=2985)	(n=2922)	(n=789)	(n=1907)	(n=1970)
PVD	1.1%	1.2%	2.0%	3.7%	1.9%	1.0%	2.5%
Chronic lung disease	2.5%	2.9%	2.0%	2.7%	2.5%	2.4%	1.8%
Ejection fraction (%)	59.1 ± 10.7	59.5 ± 10.9	58.8 ± 10.2	58.8 ± 10.2	59.2 ± 10.2	58.4 ± 9.8	57.9 ± 11.1
Clinical indication for PCI							
Stable angina	45.3%	41.6%	38.2%	41.0%	37.3%	42.5%	40.3%
Unstable angina	32.0%	34.3%	33.8%	32.4%	34.9%	27.8%	31.1%
NSTEMI	12.2%	10.9%	16.1%	14.5%	15.3%	14.9%	15.1%
STEMI	10.4%	13.1%	11.9%	12.1%	12.5%	14.8%	13.6%


Lesion characteristics

Characteristics	SES	CoCr-EES	PtCr-EES	Re-ZES	Bi-BES	No-BES	Pr-CoCr-EES
Characteristics	(n=3570)	(n=3053)	(n=2985)	(n=2922)	(n=789)	(n=1907)	(n=1970)
Treated lesions							
1	64.9%	67.2%	69.9%	72.7%	79.2%	78.0%	69.4%
2	26.4%	25.1%	23.4%	21.3%	16.9%	18.6%	23.9%
3	7.2%	6.3%	5.4%	4.7%	3.5%	2.6%	5.7%
>3	1.5%	1.3%	1.2%	1.2%	0.4%	0.8%	0.9%
Location of treated lesion							
LM	3.3%	6.7%	3.8%	5.2%	1.6%	1.1%	2.3%
LAD	49.7%	47.2%	42.4%	40.9%	46.6%	45.6%	41.6%
LCX	20.2%	19.2%	24.6%	23.1%	23.0%	24.1%	24.4%
RCA	26.6%	26.7%	29.1%	30.5%	28.8%	29.2%	31.5%
Graft	0.2%	0.2%	0.1%	0.3%	0.0%	0.0%	0.2%

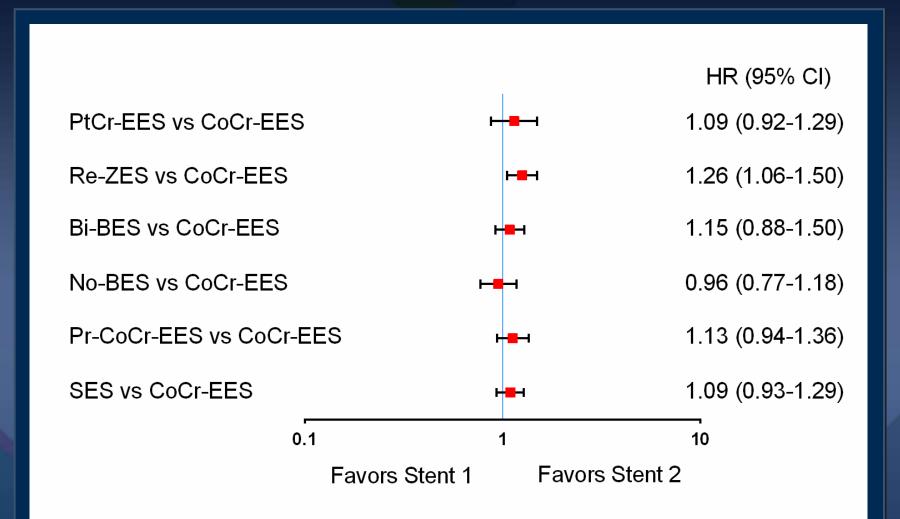
Procedural Characteristics

Characteristics	SES	CoCr-EES	PtCr-EES	Re-ZES	Bi-BES		Pr-CoCr-EES
	(n=5136)	(n=4158)	(n=5375)	(n=5476)	(n=1356)	(n=3206)	(n=3647)
Lesion type							
De novo	94.6%	95.6%	97.5%	97.5%	98.7%	99.0%	97.8%
Restenotic	5.4%	4.4%	2.5%	2.5%	1.3%	1.0%	2.2%
Number of Stents	1.2 ± 0.6	1.3 ± 0.6	1.2 ± 0.5	1.2 ± 0.5	1.1 ± 0.4	1.1 ± 0.4	1.2 ± 0.5
Stent length (mm)	32.1 ± 16.6	30.1 ± 17.8	28.0 ± 14.3	30.2 ± 15.5	24.4 ± 11.1	25.0 ± 11.3	31.4 ± 15.9
Stent diameter (mm)	3.1 ± 0.4	3.2 ± 0.4	3.2 ± 0.5	3.2 ± 0.5	3.2 ± 0.4	3.1 ± 0.4	3.1 ± 0.5
Use of IVUS	48.5%	51.3%	28.4%	36.9%	32.2%	21.0%	31.0%

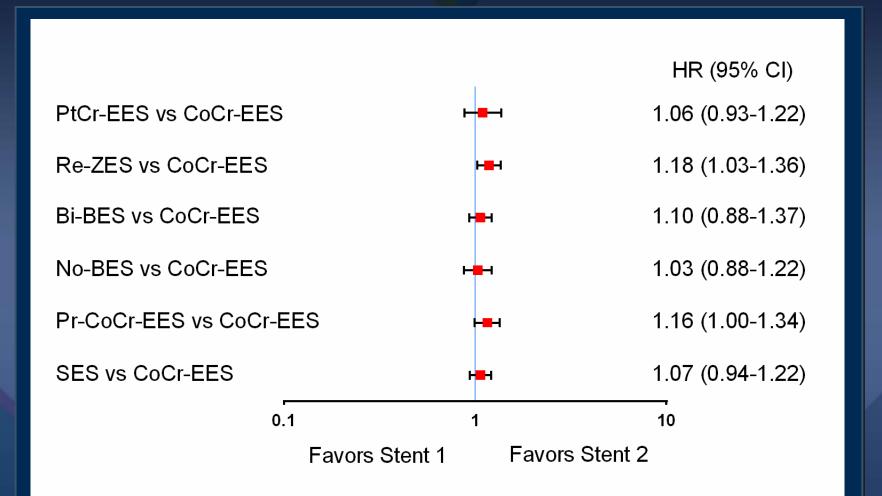

K-M Curves of Primary End Point Target-Vessel Failure (CV death, target-vessel MI, or TVR)

TCTAP2018

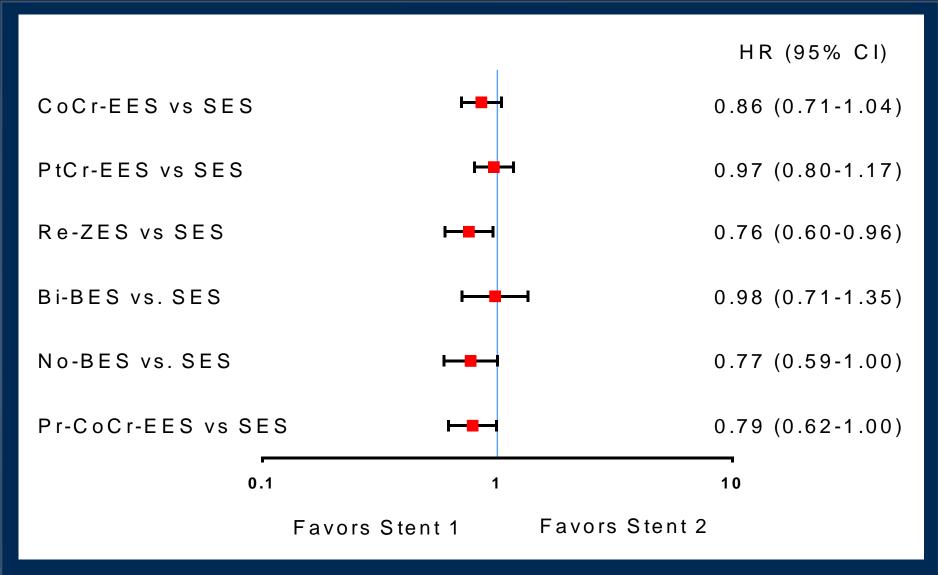
K-M Curves of Secondary End Point Major Adverse Cardiac Event (all-cause death, any MI, any revascularization)


TCTAP 2018

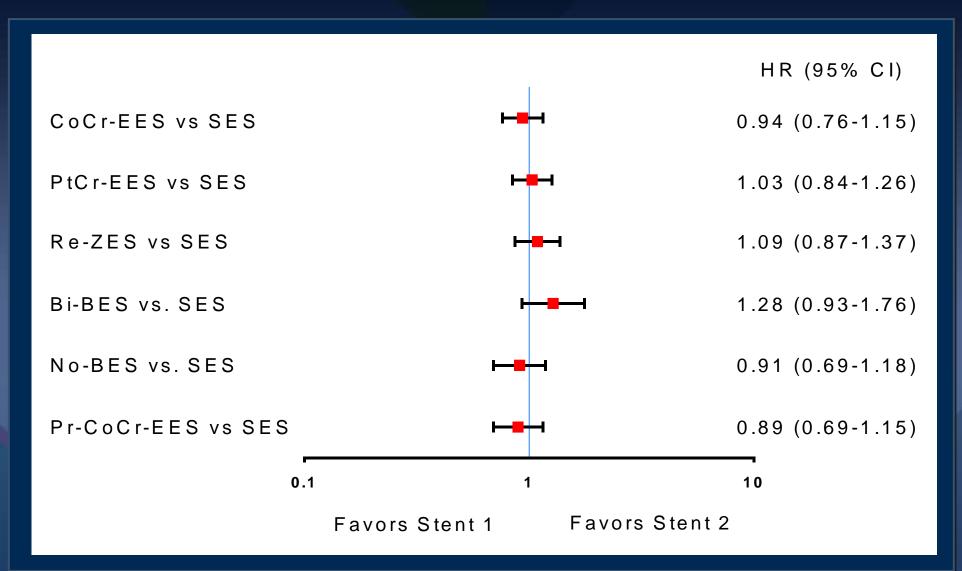
Statistical Analysis


- All analyses were truncated at 3 years of follow-up owing to different follow-up duration according to DES types and the small number of patients with data thereafter.
- Kaplan-Meier estimates and compared with the log-rank test.
- Multiple treatment-group propensity scores using the TWANG method and corresponding inverse probabilities of treatment weight with generalized boosted models through an iterative estimation procedure (n=3000), by using all the related baseline characteristic.
- PROC SURVEYPHREG procedure of SAS was used to correctly interpret weights as probability weights.

Adjusted HR of Primary End Point *Target-Vessel Failure (CV death, target-vessel MI, or TVR)*

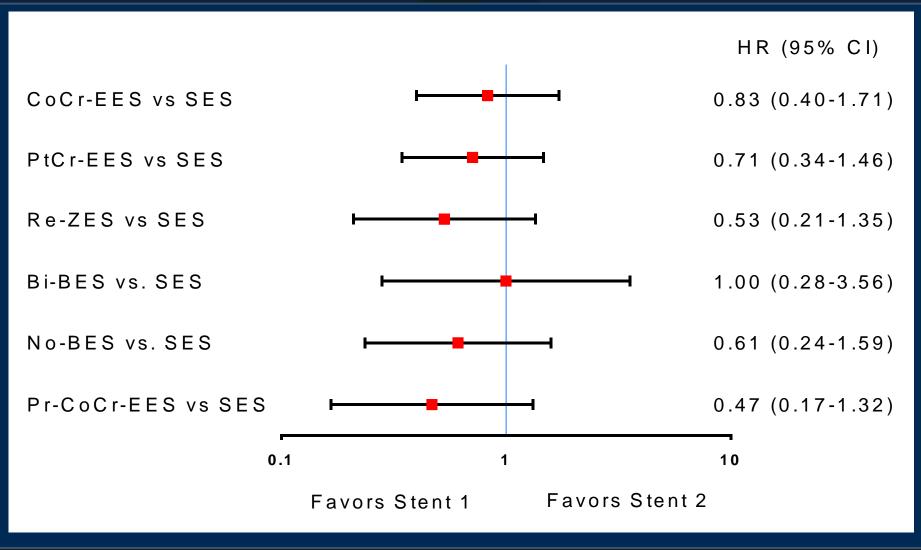


Adjusted HR of Secondary End Point *Major Adverse Cardiac Event (all-cause death, any MI, any revascularization)*



Adjusted HR: All-cause death

CVRF


Adjusted HR: TVR

Adjusted HR: Definite or Probable ST

Contemporary PCI with Second-Generation DES

- In contemporary DES era, there was no remarkable between-stent difference with respect to clinically relevant efficacy and safety outcomes
- We can choose any contemporary DES on the basis of clinical and lesion subsets and combined with the physician's preference.

Contemporary DES for Complex Lesions: Is There Difference?

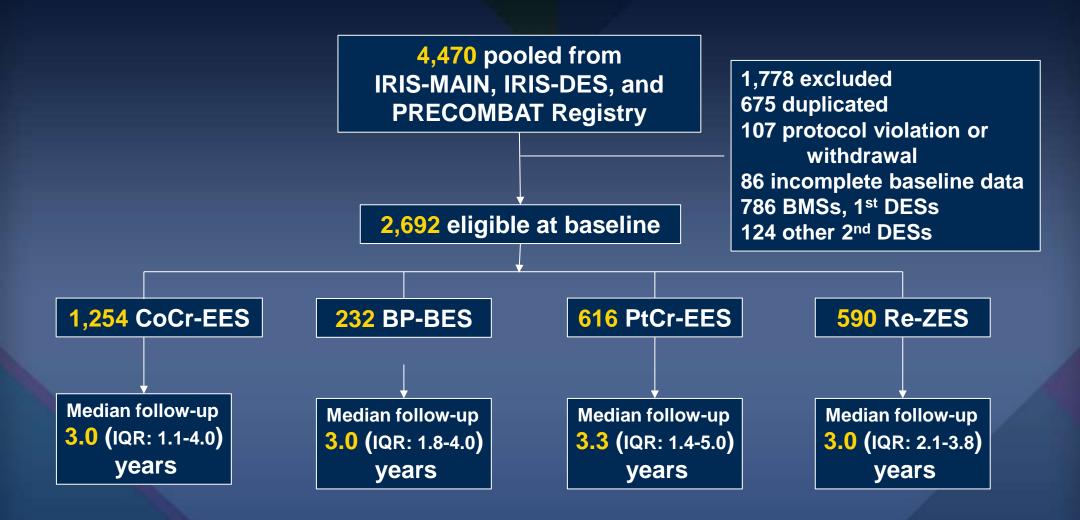
Left Main Disease

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

VOL. 71, NO. 8, 2018

Safety and Effectiveness of Second-Generation Drug-Eluting Stents in Patients With Left Main Coronary Artery Disease

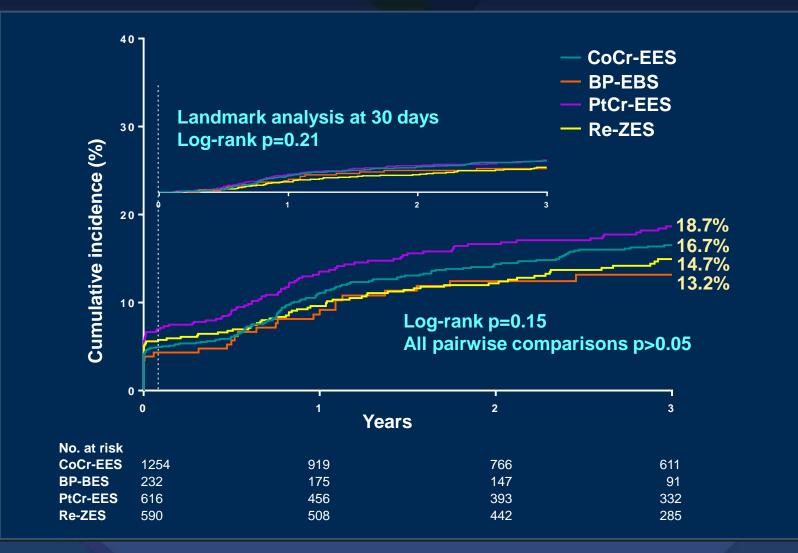
Pil Hyung Lee, MD,^a Osung Kwon, MD,^a Jung-Min Ahn, MD,^a Cheol Hyun Lee, MD,^a Do-Yoon Kang, MD,^a Jung-Bok Lee, PHD,^b Soo-Jin Kang, MD, PHD,^a Seung-Whan Lee, MD, PHD,^a Young-Hak Kim, MD, PHD,^a Cheol Whan Lee, MD, PHD,^a Seong-Wook Park, MD, PHD,^a Duk-Woo Park, MD, PHD,^a Seung-Jung Park, MD, PHD^a


A total of 4,470 patients with unprotected LMCA disease from a pooled analysis of 3 prospective, multi-center, clinical-practice registries.

Lee PH, Park DW, Park SJ et al. J Am Coll Cardiol 2018;71:832-41

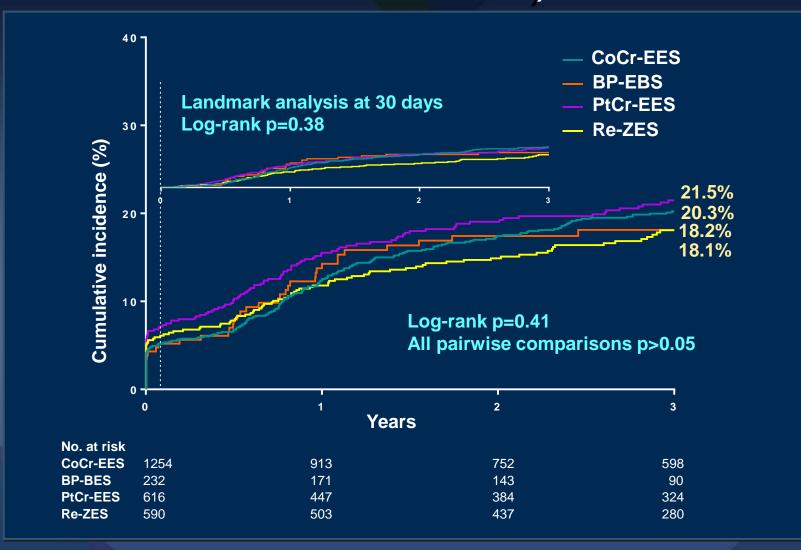
Study Flow

Lee PH, Park DW, Park SJ et al. J Am Coll Cardiol 2018;71:832-41


Statistical Analysis

- Chi-Square or Fisher exact test
- Kaplan-Meier estimates and compared with the log-rank test.
- Multiple treatment propensity scores using the TWANG method and corresponding inverse probabilities of treatment weight with generalized boosted models through an iterative estimation procedure.
- PROC SURVEYPHREG procedure of SAS was used to correctly interpret weights as probability weights.

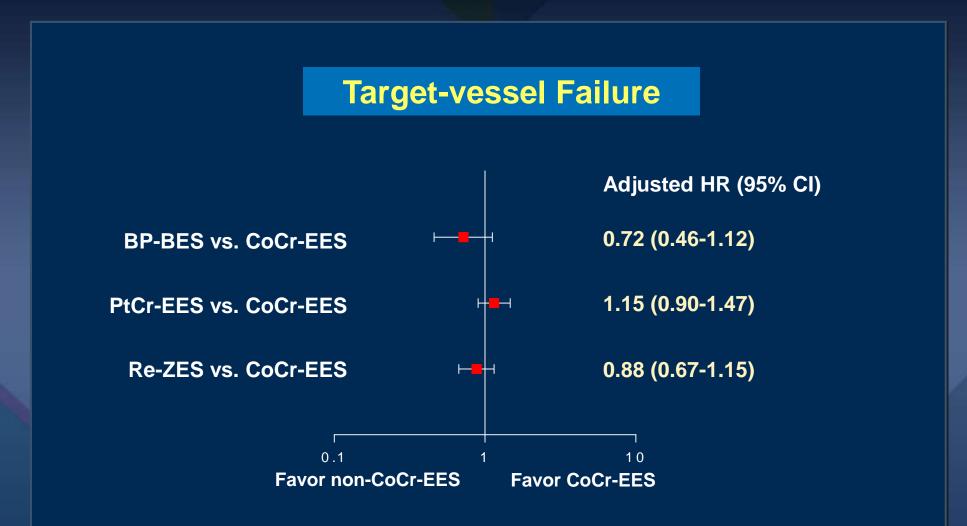
K-M Curves of Primary End Point Target-Vessel Failure (CV death, target-vessel MI, or TVR)



TCTAP2018

Lee PH, Park DW, Park SJ et al. J Am Coll Cardiol 2018;71:832-41

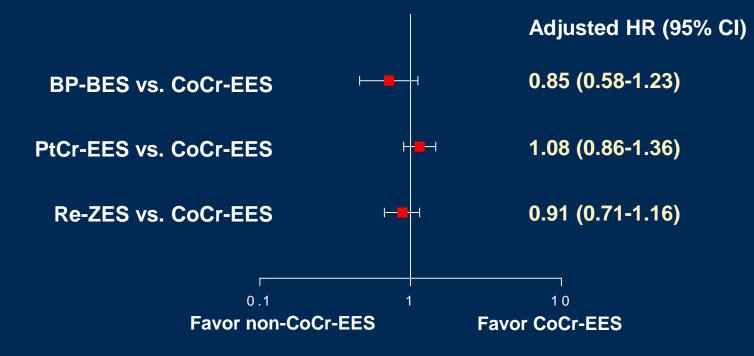
K-M Curves of Secondary End Point Major Adverse Cardiac Event (all-cause death, any MI, any revascularization)



TCTAP2018

Lee PH, Park DW, Park SJ et al. J Am Coll Cardiol 2018;71:832–41

Adjusted HR in the Multigroup Propensity-Score Analyses (TWANG Method)



Lee PH, Park DW, Park SJ et al. J Am Coll Cardiol 2018;71:832-41

Adjusted HR in the Multigroup Propensity-Score Analyses (TWANG Method)

Major Adverse Cardiac Event

TCTAP 2018

Lee PH, Park DW, Park SJ et al. J Am Coll Cardiol 2018;71:832–41

Contemporary DES for LM Disease

 In comparisons of different types of contemporary 2nd-generation DES for PCI of LMCA disease, there was no significant differences in stentrelated and patient-related outcomes at 3-year follow-up.

 The small absolute difference in outcomes in our study warrants further investigation and should be confirmed or refuted through large, randomized clinical trials with long-term follow-up.

Contemporary PCI with Second-Generation DES

- In contemporary DES era, there was no remarkable between-stent difference with respect to clinically relevant efficacy and safety outcomes
- We can choose any contemporary DES on the basis of clinical and lesion subsets and combined with the physician's preference.

DES 2018: Why Do We Need Better DES?

- We now have reached a matured milestone in PCI with contemporary DES.
- To further reduce restenosis and early and late stent thrombosis.
- To improve lifelong integrity and patency of DES.
- To reduce long-term dependency on DAPT.

"When technology stops continued innovation", "The Knowledge will also stops"